# numpy and pandas for data manipulation
import numpy as np
import pandas as pd
from sklearn.model_selection import KFold, StratifiedKFold
from sklearn.metrics import roc_auc_score
from lightgbm import LGBMClassifier
from sklearn.preprocessing import LabelEncoder
from sklearn.base import clone
import gc
import pandas as pd
import numpy as np
path = "/home/ubuntu/.kaggle/competitions/home-credit-default-risk/"
params = {
'boosting_type': 'gbdt',
'max_depth': -1,
'objective': 'binary',
'n_estimators': 3485,
'nthread': 5,
'num_leaves': 39,
'learning_rate': 0.05,
'max_bin': 512,
'subsample_for_bin': 200,
'subsample': 0.36,
'subsample_freq': 1,
'colsample_bytree': 0.98,
'reg_alpha': 8,
'reg_lambda': 2,
'min_split_gain': 0.5,
'min_child_weight': 1,
'min_child_samples': 5,
'scale_pos_weight': 1,
'num_class': 1,
'metric': 'auc'}
#Great snippet from https://www.kaggle.com/gemartin/load-data-reduce-memory-usage
def reduce_mem_usage(df):
""" iterate through all the columns of a dataframe and modify the data type
to reduce memory usage.
"""
start_mem = df.memory_usage().sum() / 1024**2
print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))
for col in df.columns:
col_type = df[col].dtype
if col_type != object:
c_min = df[col].min()
c_max = df[col].max()
if str(col_type)[:3] == 'int':
if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
df[col] = df[col].astype(np.int8)
elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
df[col] = df[col].astype(np.int16)
elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
df[col] = df[col].astype(np.int32)
elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
df[col] = df[col].astype(np.int64)
else:
if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
df[col] = df[col].astype(np.float16)
elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
df[col] = df[col].astype(np.float32)
else:
df[col] = df[col].astype(np.float64)
#else:
# df[col] = df[col].astype('category')
end_mem = df.memory_usage().sum() / 1024**2
print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))
print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))
return df
train = reduce_mem_usage(pd.read_csv(path + "application_train.csv"))
test = reduce_mem_usage(pd.read_csv(path + "application_test.csv"))
test.loc[:, "is_test"] = True
alldata = pd.concat([train, test], axis=0)
alldata.loc[:, "is_test"] = alldata.loc[:, "is_test"].fillna(False)
num_cols = alldata.select_dtypes(exclude=["object"]).columns
num_cols = [col for col in num_cols if col not in ["SK_ID_CURR", "is_test", "TARGET"]]
del train, test; gc.collect()
bureau_balance = reduce_mem_usage(pd.read_csv(path + "bureau_balance.csv"))
bureau = reduce_mem_usage(pd.read_csv(path + 'bureau.csv'))
full_bureau = pd.merge(bureau, bureau_balance, on="SK_ID_BUREAU", how="left")
del bureau_balance, bureau
gc.collect()
dataframes = [
(
"previous_application",
"SK_ID_PREV",
reduce_mem_usage(pd.read_csv(path + 'previous_application.csv'))
),
(
"bureau",
"SK_ID_BUREAU",
full_bureau
),
(
"POS_CASH_balance",
"SK_ID_PREV",
reduce_mem_usage(pd.read_csv(path + "POS_CASH_balance.csv"))
),
(
"credit_card_balance",
"SK_ID_PREV",
reduce_mem_usage(pd.read_csv(path + "credit_card_balance.csv"))
),
(
"installments_payments",
"SK_ID_PREV",
reduce_mem_usage(pd.read_csv(path + "installments_payments.csv"))
)
]
for name, key, df in dataframes:
print("Working on %s..." % name, end="")
cat_cols = df.select_dtypes(include=["object"]).columns
df = pd.get_dummies(
df,
columns=cat_cols,
drop_first=True,
dummy_na=True
)
tmp_df_mean = df.groupby("SK_ID_CURR").agg(["mean", "max"]).drop(key, axis=1)
tmp_df_mean.columns = ["_".join(col) for col in tmp_df_mean.columns.ravel()]
#tmp_df_mean.loc[:, "%s_count"%name] = df.loc[:, "SK_ID_CURR"].map(df.groupby('SK_ID_CURR').count()[key])
cols_to_keep = [col for col in tmp_df_mean.columns if col not in alldata.columns]
alldata = pd.merge(
alldata,
tmp_df_mean[cols_to_keep].reset_index(),
on="SK_ID_CURR",
how="left"
)
del tmp_df_mean
gc.collect()
print("done")
for name, key, df in dataframes:
del df; gc.collect()
del dataframes; gc.collect()
categorical_cols = [col for col in alldata.select_dtypes(include=["object"]).columns]
#Mean encoding of categorical variables
for col in categorical_cols:
means = alldata.loc[~alldata.is_test, :].groupby(col)["TARGET"].mean()
alldata.loc[:, "%s_MEAN" % col] = alldata.loc[:, col].map(means)
#Missing values is filled with global mean
alldata.loc[:, "%s_MEAN" % col] = alldata.loc[:, "%s_MEAN" % col].fillna(means.mean())
alldata.loc[:, categorical_cols] = alldata.loc[:, categorical_cols].apply(lambda x: LabelEncoder().fit_transform(x.astype(str)))
pd.options.display.max_columns = None
alldata.head()
AMT_ANNUITY | AMT_CREDIT | AMT_GOODS_PRICE | AMT_INCOME_TOTAL | AMT_REQ_CREDIT_BUREAU_DAY | AMT_REQ_CREDIT_BUREAU_HOUR | AMT_REQ_CREDIT_BUREAU_MON | AMT_REQ_CREDIT_BUREAU_QRT | AMT_REQ_CREDIT_BUREAU_WEEK | AMT_REQ_CREDIT_BUREAU_YEAR | APARTMENTS_AVG | APARTMENTS_MEDI | APARTMENTS_MODE | BASEMENTAREA_AVG | BASEMENTAREA_MEDI | BASEMENTAREA_MODE | CNT_CHILDREN | CNT_FAM_MEMBERS | CODE_GENDER | COMMONAREA_AVG | COMMONAREA_MEDI | COMMONAREA_MODE | DAYS_BIRTH | DAYS_EMPLOYED | DAYS_ID_PUBLISH | DAYS_LAST_PHONE_CHANGE | DAYS_REGISTRATION | DEF_30_CNT_SOCIAL_CIRCLE | DEF_60_CNT_SOCIAL_CIRCLE | ELEVATORS_AVG | ELEVATORS_MEDI | ELEVATORS_MODE | EMERGENCYSTATE_MODE | ENTRANCES_AVG | ENTRANCES_MEDI | ENTRANCES_MODE | EXT_SOURCE_1 | EXT_SOURCE_2 | EXT_SOURCE_3 | FLAG_CONT_MOBILE | FLAG_DOCUMENT_10 | FLAG_DOCUMENT_11 | FLAG_DOCUMENT_12 | FLAG_DOCUMENT_13 | FLAG_DOCUMENT_14 | FLAG_DOCUMENT_15 | FLAG_DOCUMENT_16 | FLAG_DOCUMENT_17 | FLAG_DOCUMENT_18 | FLAG_DOCUMENT_19 | FLAG_DOCUMENT_2 | FLAG_DOCUMENT_20 | FLAG_DOCUMENT_21 | FLAG_DOCUMENT_3 | FLAG_DOCUMENT_4 | FLAG_DOCUMENT_5 | FLAG_DOCUMENT_6 | FLAG_DOCUMENT_7 | FLAG_DOCUMENT_8 | FLAG_DOCUMENT_9 | FLAG_EMAIL | FLAG_EMP_PHONE | FLAG_MOBIL | FLAG_OWN_CAR | FLAG_OWN_REALTY | FLAG_PHONE | FLAG_WORK_PHONE | FLOORSMAX_AVG | FLOORSMAX_MEDI | FLOORSMAX_MODE | FLOORSMIN_AVG | FLOORSMIN_MEDI | FLOORSMIN_MODE | FONDKAPREMONT_MODE | HOUR_APPR_PROCESS_START | HOUSETYPE_MODE | LANDAREA_AVG | LANDAREA_MEDI | LANDAREA_MODE | LIVE_CITY_NOT_WORK_CITY | LIVE_REGION_NOT_WORK_REGION | LIVINGAPARTMENTS_AVG | LIVINGAPARTMENTS_MEDI | LIVINGAPARTMENTS_MODE | LIVINGAREA_AVG | LIVINGAREA_MEDI | LIVINGAREA_MODE | NAME_CONTRACT_TYPE | NAME_EDUCATION_TYPE | NAME_FAMILY_STATUS | NAME_HOUSING_TYPE | NAME_INCOME_TYPE | NAME_TYPE_SUITE | NONLIVINGAPARTMENTS_AVG | NONLIVINGAPARTMENTS_MEDI | NONLIVINGAPARTMENTS_MODE | NONLIVINGAREA_AVG | NONLIVINGAREA_MEDI | NONLIVINGAREA_MODE | OBS_30_CNT_SOCIAL_CIRCLE | OBS_60_CNT_SOCIAL_CIRCLE | OCCUPATION_TYPE | ORGANIZATION_TYPE | OWN_CAR_AGE | REGION_POPULATION_RELATIVE | REGION_RATING_CLIENT | REGION_RATING_CLIENT_W_CITY | REG_CITY_NOT_LIVE_CITY | REG_CITY_NOT_WORK_CITY | REG_REGION_NOT_LIVE_REGION | REG_REGION_NOT_WORK_REGION | SK_ID_CURR | TARGET | TOTALAREA_MODE | WALLSMATERIAL_MODE | WEEKDAY_APPR_PROCESS_START | YEARS_BEGINEXPLUATATION_AVG | YEARS_BEGINEXPLUATATION_MEDI | YEARS_BEGINEXPLUATATION_MODE | YEARS_BUILD_AVG | YEARS_BUILD_MEDI | YEARS_BUILD_MODE | is_test | AMT_ANNUITY_mean | AMT_ANNUITY_max | AMT_APPLICATION_mean | AMT_APPLICATION_max | AMT_CREDIT_mean | AMT_CREDIT_max | AMT_DOWN_PAYMENT_mean | AMT_DOWN_PAYMENT_max | AMT_GOODS_PRICE_mean | AMT_GOODS_PRICE_max | HOUR_APPR_PROCESS_START_mean | HOUR_APPR_PROCESS_START_max | NFLAG_LAST_APPL_IN_DAY_mean | NFLAG_LAST_APPL_IN_DAY_max | RATE_DOWN_PAYMENT_mean | RATE_DOWN_PAYMENT_max | RATE_INTEREST_PRIMARY_mean | RATE_INTEREST_PRIMARY_max | RATE_INTEREST_PRIVILEGED_mean | RATE_INTEREST_PRIVILEGED_max | DAYS_DECISION_mean | DAYS_DECISION_max | SELLERPLACE_AREA_mean | SELLERPLACE_AREA_max | CNT_PAYMENT_mean | CNT_PAYMENT_max | DAYS_FIRST_DRAWING_mean | DAYS_FIRST_DRAWING_max | DAYS_FIRST_DUE_mean | DAYS_FIRST_DUE_max | DAYS_LAST_DUE_1ST_VERSION_mean | DAYS_LAST_DUE_1ST_VERSION_max | DAYS_LAST_DUE_mean | DAYS_LAST_DUE_max | DAYS_TERMINATION_mean | DAYS_TERMINATION_max | NFLAG_INSURED_ON_APPROVAL_mean | NFLAG_INSURED_ON_APPROVAL_max | NAME_CONTRACT_TYPE_Consumer loans_mean | NAME_CONTRACT_TYPE_Consumer loans_max | NAME_CONTRACT_TYPE_Revolving loans_mean | NAME_CONTRACT_TYPE_Revolving loans_max | NAME_CONTRACT_TYPE_XNA_mean | NAME_CONTRACT_TYPE_XNA_max | NAME_CONTRACT_TYPE_nan_mean | NAME_CONTRACT_TYPE_nan_max | WEEKDAY_APPR_PROCESS_START_MONDAY_mean | WEEKDAY_APPR_PROCESS_START_MONDAY_max | WEEKDAY_APPR_PROCESS_START_SATURDAY_mean | WEEKDAY_APPR_PROCESS_START_SATURDAY_max | WEEKDAY_APPR_PROCESS_START_SUNDAY_mean | WEEKDAY_APPR_PROCESS_START_SUNDAY_max | WEEKDAY_APPR_PROCESS_START_THURSDAY_mean | WEEKDAY_APPR_PROCESS_START_THURSDAY_max | WEEKDAY_APPR_PROCESS_START_TUESDAY_mean | WEEKDAY_APPR_PROCESS_START_TUESDAY_max | WEEKDAY_APPR_PROCESS_START_WEDNESDAY_mean | WEEKDAY_APPR_PROCESS_START_WEDNESDAY_max | WEEKDAY_APPR_PROCESS_START_nan_mean | WEEKDAY_APPR_PROCESS_START_nan_max | FLAG_LAST_APPL_PER_CONTRACT_Y_mean | FLAG_LAST_APPL_PER_CONTRACT_Y_max | FLAG_LAST_APPL_PER_CONTRACT_nan_mean | FLAG_LAST_APPL_PER_CONTRACT_nan_max | NAME_CASH_LOAN_PURPOSE_Business development_mean | NAME_CASH_LOAN_PURPOSE_Business development_max | NAME_CASH_LOAN_PURPOSE_Buying a garage_mean | NAME_CASH_LOAN_PURPOSE_Buying a garage_max | NAME_CASH_LOAN_PURPOSE_Buying a holiday home / land_mean | NAME_CASH_LOAN_PURPOSE_Buying a holiday home / land_max | NAME_CASH_LOAN_PURPOSE_Buying a home_mean | NAME_CASH_LOAN_PURPOSE_Buying a home_max | NAME_CASH_LOAN_PURPOSE_Buying a new car_mean | NAME_CASH_LOAN_PURPOSE_Buying a new car_max | NAME_CASH_LOAN_PURPOSE_Buying a used car_mean | NAME_CASH_LOAN_PURPOSE_Buying a used car_max | NAME_CASH_LOAN_PURPOSE_Car repairs_mean | NAME_CASH_LOAN_PURPOSE_Car repairs_max | NAME_CASH_LOAN_PURPOSE_Education_mean | NAME_CASH_LOAN_PURPOSE_Education_max | NAME_CASH_LOAN_PURPOSE_Everyday expenses_mean | NAME_CASH_LOAN_PURPOSE_Everyday expenses_max | NAME_CASH_LOAN_PURPOSE_Furniture_mean | NAME_CASH_LOAN_PURPOSE_Furniture_max | NAME_CASH_LOAN_PURPOSE_Gasification / water supply_mean | NAME_CASH_LOAN_PURPOSE_Gasification / water supply_max | NAME_CASH_LOAN_PURPOSE_Hobby_mean | NAME_CASH_LOAN_PURPOSE_Hobby_max | NAME_CASH_LOAN_PURPOSE_Journey_mean | NAME_CASH_LOAN_PURPOSE_Journey_max | NAME_CASH_LOAN_PURPOSE_Medicine_mean | NAME_CASH_LOAN_PURPOSE_Medicine_max | NAME_CASH_LOAN_PURPOSE_Money for a third person_mean | NAME_CASH_LOAN_PURPOSE_Money for a third person_max | NAME_CASH_LOAN_PURPOSE_Other_mean | NAME_CASH_LOAN_PURPOSE_Other_max | NAME_CASH_LOAN_PURPOSE_Payments on other loans_mean | NAME_CASH_LOAN_PURPOSE_Payments on other loans_max | NAME_CASH_LOAN_PURPOSE_Purchase of electronic equipment_mean | NAME_CASH_LOAN_PURPOSE_Purchase of electronic equipment_max | NAME_CASH_LOAN_PURPOSE_Refusal to name the goal_mean | NAME_CASH_LOAN_PURPOSE_Refusal to name the goal_max | NAME_CASH_LOAN_PURPOSE_Repairs_mean | NAME_CASH_LOAN_PURPOSE_Repairs_max | NAME_CASH_LOAN_PURPOSE_Urgent needs_mean | NAME_CASH_LOAN_PURPOSE_Urgent needs_max | NAME_CASH_LOAN_PURPOSE_Wedding / gift / holiday_mean | NAME_CASH_LOAN_PURPOSE_Wedding / gift / holiday_max | NAME_CASH_LOAN_PURPOSE_XAP_mean | NAME_CASH_LOAN_PURPOSE_XAP_max | NAME_CASH_LOAN_PURPOSE_XNA_mean | NAME_CASH_LOAN_PURPOSE_XNA_max | NAME_CASH_LOAN_PURPOSE_nan_mean | NAME_CASH_LOAN_PURPOSE_nan_max | NAME_CONTRACT_STATUS_Canceled_mean | NAME_CONTRACT_STATUS_Canceled_max | NAME_CONTRACT_STATUS_Refused_mean | NAME_CONTRACT_STATUS_Refused_max | NAME_CONTRACT_STATUS_Unused offer_mean | NAME_CONTRACT_STATUS_Unused offer_max | NAME_CONTRACT_STATUS_nan_mean | NAME_CONTRACT_STATUS_nan_max | NAME_PAYMENT_TYPE_Cashless from the account of the employer_mean | NAME_PAYMENT_TYPE_Cashless from the account of the employer_max | NAME_PAYMENT_TYPE_Non-cash from your account_mean | NAME_PAYMENT_TYPE_Non-cash from your account_max | NAME_PAYMENT_TYPE_XNA_mean | NAME_PAYMENT_TYPE_XNA_max | NAME_PAYMENT_TYPE_nan_mean | NAME_PAYMENT_TYPE_nan_max | CODE_REJECT_REASON_HC_mean | CODE_REJECT_REASON_HC_max | CODE_REJECT_REASON_LIMIT_mean | CODE_REJECT_REASON_LIMIT_max | CODE_REJECT_REASON_SCO_mean | CODE_REJECT_REASON_SCO_max | CODE_REJECT_REASON_SCOFR_mean | CODE_REJECT_REASON_SCOFR_max | CODE_REJECT_REASON_SYSTEM_mean | CODE_REJECT_REASON_SYSTEM_max | CODE_REJECT_REASON_VERIF_mean | CODE_REJECT_REASON_VERIF_max | CODE_REJECT_REASON_XAP_mean | CODE_REJECT_REASON_XAP_max | CODE_REJECT_REASON_XNA_mean | CODE_REJECT_REASON_XNA_max | CODE_REJECT_REASON_nan_mean | CODE_REJECT_REASON_nan_max | NAME_TYPE_SUITE_Family_mean | NAME_TYPE_SUITE_Family_max | NAME_TYPE_SUITE_Group of people_mean | NAME_TYPE_SUITE_Group of people_max | NAME_TYPE_SUITE_Other_A_mean | NAME_TYPE_SUITE_Other_A_max | NAME_TYPE_SUITE_Other_B_mean | NAME_TYPE_SUITE_Other_B_max | NAME_TYPE_SUITE_Spouse, partner_mean | NAME_TYPE_SUITE_Spouse, partner_max | NAME_TYPE_SUITE_Unaccompanied_mean | NAME_TYPE_SUITE_Unaccompanied_max | NAME_TYPE_SUITE_nan_mean | NAME_TYPE_SUITE_nan_max | NAME_CLIENT_TYPE_Refreshed_mean | NAME_CLIENT_TYPE_Refreshed_max | NAME_CLIENT_TYPE_Repeater_mean | NAME_CLIENT_TYPE_Repeater_max | NAME_CLIENT_TYPE_XNA_mean | NAME_CLIENT_TYPE_XNA_max | NAME_CLIENT_TYPE_nan_mean | NAME_CLIENT_TYPE_nan_max | NAME_GOODS_CATEGORY_Animals_mean | NAME_GOODS_CATEGORY_Animals_max | NAME_GOODS_CATEGORY_Audio/Video_mean | NAME_GOODS_CATEGORY_Audio/Video_max | NAME_GOODS_CATEGORY_Auto Accessories_mean | NAME_GOODS_CATEGORY_Auto Accessories_max | NAME_GOODS_CATEGORY_Clothing and Accessories_mean | NAME_GOODS_CATEGORY_Clothing and Accessories_max | NAME_GOODS_CATEGORY_Computers_mean | NAME_GOODS_CATEGORY_Computers_max | NAME_GOODS_CATEGORY_Construction Materials_mean | NAME_GOODS_CATEGORY_Construction Materials_max | NAME_GOODS_CATEGORY_Consumer Electronics_mean | NAME_GOODS_CATEGORY_Consumer Electronics_max | NAME_GOODS_CATEGORY_Direct Sales_mean | NAME_GOODS_CATEGORY_Direct Sales_max | NAME_GOODS_CATEGORY_Education_mean | NAME_GOODS_CATEGORY_Education_max | NAME_GOODS_CATEGORY_Fitness_mean | NAME_GOODS_CATEGORY_Fitness_max | NAME_GOODS_CATEGORY_Furniture_mean | NAME_GOODS_CATEGORY_Furniture_max | NAME_GOODS_CATEGORY_Gardening_mean | NAME_GOODS_CATEGORY_Gardening_max | NAME_GOODS_CATEGORY_Homewares_mean | NAME_GOODS_CATEGORY_Homewares_max | NAME_GOODS_CATEGORY_House Construction_mean | NAME_GOODS_CATEGORY_House Construction_max | NAME_GOODS_CATEGORY_Insurance_mean | NAME_GOODS_CATEGORY_Insurance_max | NAME_GOODS_CATEGORY_Jewelry_mean | NAME_GOODS_CATEGORY_Jewelry_max | NAME_GOODS_CATEGORY_Medical Supplies_mean | NAME_GOODS_CATEGORY_Medical Supplies_max | NAME_GOODS_CATEGORY_Medicine_mean | NAME_GOODS_CATEGORY_Medicine_max | NAME_GOODS_CATEGORY_Mobile_mean | NAME_GOODS_CATEGORY_Mobile_max | NAME_GOODS_CATEGORY_Office Appliances_mean | NAME_GOODS_CATEGORY_Office Appliances_max | NAME_GOODS_CATEGORY_Other_mean | NAME_GOODS_CATEGORY_Other_max | NAME_GOODS_CATEGORY_Photo / Cinema Equipment_mean | NAME_GOODS_CATEGORY_Photo / Cinema Equipment_max | NAME_GOODS_CATEGORY_Sport and Leisure_mean | NAME_GOODS_CATEGORY_Sport and Leisure_max | NAME_GOODS_CATEGORY_Tourism_mean | NAME_GOODS_CATEGORY_Tourism_max | NAME_GOODS_CATEGORY_Vehicles_mean | NAME_GOODS_CATEGORY_Vehicles_max | NAME_GOODS_CATEGORY_Weapon_mean | NAME_GOODS_CATEGORY_Weapon_max | NAME_GOODS_CATEGORY_XNA_mean | NAME_GOODS_CATEGORY_XNA_max | NAME_GOODS_CATEGORY_nan_mean | NAME_GOODS_CATEGORY_nan_max | NAME_PORTFOLIO_Cars_mean | NAME_PORTFOLIO_Cars_max | NAME_PORTFOLIO_Cash_mean | NAME_PORTFOLIO_Cash_max | NAME_PORTFOLIO_POS_mean | NAME_PORTFOLIO_POS_max | NAME_PORTFOLIO_XNA_mean | NAME_PORTFOLIO_XNA_max | NAME_PORTFOLIO_nan_mean | NAME_PORTFOLIO_nan_max | NAME_PRODUCT_TYPE_walk-in_mean | NAME_PRODUCT_TYPE_walk-in_max | NAME_PRODUCT_TYPE_x-sell_mean | NAME_PRODUCT_TYPE_x-sell_max | NAME_PRODUCT_TYPE_nan_mean | NAME_PRODUCT_TYPE_nan_max | CHANNEL_TYPE_Car dealer_mean | CHANNEL_TYPE_Car dealer_max | CHANNEL_TYPE_Channel of corporate sales_mean | CHANNEL_TYPE_Channel of corporate sales_max | CHANNEL_TYPE_Contact center_mean | CHANNEL_TYPE_Contact center_max | CHANNEL_TYPE_Country-wide_mean | CHANNEL_TYPE_Country-wide_max | CHANNEL_TYPE_Credit and cash offices_mean | CHANNEL_TYPE_Credit and cash offices_max | CHANNEL_TYPE_Regional / Local_mean | CHANNEL_TYPE_Regional / Local_max | CHANNEL_TYPE_Stone_mean | CHANNEL_TYPE_Stone_max | CHANNEL_TYPE_nan_mean | CHANNEL_TYPE_nan_max | NAME_SELLER_INDUSTRY_Clothing_mean | NAME_SELLER_INDUSTRY_Clothing_max | NAME_SELLER_INDUSTRY_Connectivity_mean | NAME_SELLER_INDUSTRY_Connectivity_max | NAME_SELLER_INDUSTRY_Construction_mean | NAME_SELLER_INDUSTRY_Construction_max | NAME_SELLER_INDUSTRY_Consumer electronics_mean | NAME_SELLER_INDUSTRY_Consumer electronics_max | NAME_SELLER_INDUSTRY_Furniture_mean | NAME_SELLER_INDUSTRY_Furniture_max | NAME_SELLER_INDUSTRY_Industry_mean | NAME_SELLER_INDUSTRY_Industry_max | NAME_SELLER_INDUSTRY_Jewelry_mean | NAME_SELLER_INDUSTRY_Jewelry_max | NAME_SELLER_INDUSTRY_MLM partners_mean | NAME_SELLER_INDUSTRY_MLM partners_max | NAME_SELLER_INDUSTRY_Tourism_mean | NAME_SELLER_INDUSTRY_Tourism_max | NAME_SELLER_INDUSTRY_XNA_mean | NAME_SELLER_INDUSTRY_XNA_max | NAME_SELLER_INDUSTRY_nan_mean | NAME_SELLER_INDUSTRY_nan_max | NAME_YIELD_GROUP_high_mean | NAME_YIELD_GROUP_high_max | NAME_YIELD_GROUP_low_action_mean | NAME_YIELD_GROUP_low_action_max | NAME_YIELD_GROUP_low_normal_mean | NAME_YIELD_GROUP_low_normal_max | NAME_YIELD_GROUP_middle_mean | NAME_YIELD_GROUP_middle_max | NAME_YIELD_GROUP_nan_mean | NAME_YIELD_GROUP_nan_max | PRODUCT_COMBINATION_Card X-Sell_mean | PRODUCT_COMBINATION_Card X-Sell_max | PRODUCT_COMBINATION_Cash_mean | PRODUCT_COMBINATION_Cash_max | PRODUCT_COMBINATION_Cash Street: high_mean | PRODUCT_COMBINATION_Cash Street: high_max | PRODUCT_COMBINATION_Cash Street: low_mean | PRODUCT_COMBINATION_Cash Street: low_max | PRODUCT_COMBINATION_Cash Street: middle_mean | PRODUCT_COMBINATION_Cash Street: middle_max | PRODUCT_COMBINATION_Cash X-Sell: high_mean | PRODUCT_COMBINATION_Cash X-Sell: high_max | PRODUCT_COMBINATION_Cash X-Sell: low_mean | PRODUCT_COMBINATION_Cash X-Sell: low_max | PRODUCT_COMBINATION_Cash X-Sell: middle_mean | PRODUCT_COMBINATION_Cash X-Sell: middle_max | PRODUCT_COMBINATION_POS household with interest_mean | PRODUCT_COMBINATION_POS household with interest_max | PRODUCT_COMBINATION_POS household without interest_mean | PRODUCT_COMBINATION_POS household without interest_max | PRODUCT_COMBINATION_POS industry with interest_mean | PRODUCT_COMBINATION_POS industry with interest_max | PRODUCT_COMBINATION_POS industry without interest_mean | PRODUCT_COMBINATION_POS industry without interest_max | PRODUCT_COMBINATION_POS mobile with interest_mean | PRODUCT_COMBINATION_POS mobile with interest_max | PRODUCT_COMBINATION_POS mobile without interest_mean | PRODUCT_COMBINATION_POS mobile without interest_max | PRODUCT_COMBINATION_POS other with interest_mean | PRODUCT_COMBINATION_POS other with interest_max | PRODUCT_COMBINATION_POS others without interest_mean | PRODUCT_COMBINATION_POS others without interest_max | PRODUCT_COMBINATION_nan_mean | PRODUCT_COMBINATION_nan_max | DAYS_CREDIT_mean | DAYS_CREDIT_max | CREDIT_DAY_OVERDUE_mean | CREDIT_DAY_OVERDUE_max | DAYS_CREDIT_ENDDATE_mean | DAYS_CREDIT_ENDDATE_max | DAYS_ENDDATE_FACT_mean | DAYS_ENDDATE_FACT_max | AMT_CREDIT_MAX_OVERDUE_mean | AMT_CREDIT_MAX_OVERDUE_max | CNT_CREDIT_PROLONG_mean | CNT_CREDIT_PROLONG_max | AMT_CREDIT_SUM_mean | AMT_CREDIT_SUM_max | AMT_CREDIT_SUM_DEBT_mean | AMT_CREDIT_SUM_DEBT_max | AMT_CREDIT_SUM_LIMIT_mean | AMT_CREDIT_SUM_LIMIT_max | AMT_CREDIT_SUM_OVERDUE_mean | AMT_CREDIT_SUM_OVERDUE_max | DAYS_CREDIT_UPDATE_mean | DAYS_CREDIT_UPDATE_max | MONTHS_BALANCE_mean | MONTHS_BALANCE_max | CREDIT_ACTIVE_Bad debt_mean | CREDIT_ACTIVE_Bad debt_max | CREDIT_ACTIVE_Closed_mean | CREDIT_ACTIVE_Closed_max | CREDIT_ACTIVE_Sold_mean | CREDIT_ACTIVE_Sold_max | CREDIT_ACTIVE_nan_mean | CREDIT_ACTIVE_nan_max | CREDIT_CURRENCY_currency 2_mean | CREDIT_CURRENCY_currency 2_max | CREDIT_CURRENCY_currency 3_mean | CREDIT_CURRENCY_currency 3_max | CREDIT_CURRENCY_currency 4_mean | CREDIT_CURRENCY_currency 4_max | CREDIT_CURRENCY_nan_mean | CREDIT_CURRENCY_nan_max | CREDIT_TYPE_Car loan_mean | CREDIT_TYPE_Car loan_max | CREDIT_TYPE_Cash loan (non-earmarked)_mean | CREDIT_TYPE_Cash loan (non-earmarked)_max | CREDIT_TYPE_Consumer credit_mean | CREDIT_TYPE_Consumer credit_max | CREDIT_TYPE_Credit card_mean | CREDIT_TYPE_Credit card_max | CREDIT_TYPE_Interbank credit_mean | CREDIT_TYPE_Interbank credit_max | CREDIT_TYPE_Loan for business development_mean | CREDIT_TYPE_Loan for business development_max | CREDIT_TYPE_Loan for purchase of shares (margin lending)_mean | CREDIT_TYPE_Loan for purchase of shares (margin lending)_max | CREDIT_TYPE_Loan for the purchase of equipment_mean | CREDIT_TYPE_Loan for the purchase of equipment_max | CREDIT_TYPE_Loan for working capital replenishment_mean | CREDIT_TYPE_Loan for working capital replenishment_max | CREDIT_TYPE_Microloan_mean | CREDIT_TYPE_Microloan_max | CREDIT_TYPE_Mobile operator loan_mean | CREDIT_TYPE_Mobile operator loan_max | CREDIT_TYPE_Mortgage_mean | CREDIT_TYPE_Mortgage_max | CREDIT_TYPE_Real estate loan_mean | CREDIT_TYPE_Real estate loan_max | CREDIT_TYPE_Unknown type of loan_mean | CREDIT_TYPE_Unknown type of loan_max | CREDIT_TYPE_nan_mean | CREDIT_TYPE_nan_max | STATUS_1_mean | STATUS_1_max | STATUS_2_mean | STATUS_2_max | STATUS_3_mean | STATUS_3_max | STATUS_4_mean | STATUS_4_max | STATUS_5_mean | STATUS_5_max | STATUS_C_mean | STATUS_C_max | STATUS_X_mean | STATUS_X_max | STATUS_nan_mean | STATUS_nan_max | CNT_INSTALMENT_mean | CNT_INSTALMENT_max | CNT_INSTALMENT_FUTURE_mean | CNT_INSTALMENT_FUTURE_max | SK_DPD_mean | SK_DPD_max | SK_DPD_DEF_mean | SK_DPD_DEF_max | NAME_CONTRACT_STATUS_Amortized debt_mean | NAME_CONTRACT_STATUS_Amortized debt_max | NAME_CONTRACT_STATUS_Approved_mean | NAME_CONTRACT_STATUS_Approved_max | NAME_CONTRACT_STATUS_Completed_mean | NAME_CONTRACT_STATUS_Completed_max | NAME_CONTRACT_STATUS_Demand_mean | NAME_CONTRACT_STATUS_Demand_max | NAME_CONTRACT_STATUS_Returned to the store_mean | NAME_CONTRACT_STATUS_Returned to the store_max | NAME_CONTRACT_STATUS_Signed_mean | NAME_CONTRACT_STATUS_Signed_max | NAME_CONTRACT_STATUS_XNA_mean | NAME_CONTRACT_STATUS_XNA_max | AMT_BALANCE_mean | AMT_BALANCE_max | AMT_CREDIT_LIMIT_ACTUAL_mean | AMT_CREDIT_LIMIT_ACTUAL_max | AMT_DRAWINGS_ATM_CURRENT_mean | AMT_DRAWINGS_ATM_CURRENT_max | AMT_DRAWINGS_CURRENT_mean | AMT_DRAWINGS_CURRENT_max | AMT_DRAWINGS_OTHER_CURRENT_mean | AMT_DRAWINGS_OTHER_CURRENT_max | AMT_DRAWINGS_POS_CURRENT_mean | AMT_DRAWINGS_POS_CURRENT_max | AMT_INST_MIN_REGULARITY_mean | AMT_INST_MIN_REGULARITY_max | AMT_PAYMENT_CURRENT_mean | AMT_PAYMENT_CURRENT_max | AMT_PAYMENT_TOTAL_CURRENT_mean | AMT_PAYMENT_TOTAL_CURRENT_max | AMT_RECEIVABLE_PRINCIPAL_mean | AMT_RECEIVABLE_PRINCIPAL_max | AMT_RECIVABLE_mean | AMT_RECIVABLE_max | AMT_TOTAL_RECEIVABLE_mean | AMT_TOTAL_RECEIVABLE_max | CNT_DRAWINGS_ATM_CURRENT_mean | CNT_DRAWINGS_ATM_CURRENT_max | CNT_DRAWINGS_CURRENT_mean | CNT_DRAWINGS_CURRENT_max | CNT_DRAWINGS_OTHER_CURRENT_mean | CNT_DRAWINGS_OTHER_CURRENT_max | CNT_DRAWINGS_POS_CURRENT_mean | CNT_DRAWINGS_POS_CURRENT_max | CNT_INSTALMENT_MATURE_CUM_mean | CNT_INSTALMENT_MATURE_CUM_max | NAME_CONTRACT_STATUS_Sent proposal_mean | NAME_CONTRACT_STATUS_Sent proposal_max | NUM_INSTALMENT_VERSION_mean | NUM_INSTALMENT_VERSION_max | NUM_INSTALMENT_NUMBER_mean | NUM_INSTALMENT_NUMBER_max | DAYS_INSTALMENT_mean | DAYS_INSTALMENT_max | DAYS_ENTRY_PAYMENT_mean | DAYS_ENTRY_PAYMENT_max | AMT_INSTALMENT_mean | AMT_INSTALMENT_max | AMT_PAYMENT_mean | AMT_PAYMENT_max | CODE_GENDER_MEAN | EMERGENCYSTATE_MODE_MEAN | FLAG_OWN_CAR_MEAN | FLAG_OWN_REALTY_MEAN | FONDKAPREMONT_MODE_MEAN | HOUSETYPE_MODE_MEAN | NAME_CONTRACT_TYPE_MEAN | NAME_EDUCATION_TYPE_MEAN | NAME_FAMILY_STATUS_MEAN | NAME_HOUSING_TYPE_MEAN | NAME_INCOME_TYPE_MEAN | NAME_TYPE_SUITE_MEAN | OCCUPATION_TYPE_MEAN | ORGANIZATION_TYPE_MEAN | WALLSMATERIAL_MODE_MEAN | WEEKDAY_APPR_PROCESS_START_MEAN | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 24700.5 | 406597.5 | 351000.0 | 202500.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.024704 | 0.024994 | 0.025208 | 0.036896 | 0.036896 | 0.038300 | 0 | 1.0 | 1 | 0.014297 | 0.014397 | 0.014397 | -9461 | -637 | -2120 | -1134.0 | -3648.0 | 2.0 | 2.0 | 0.000000 | 0.000000 | 0.000000 | 0 | 0.068970 | 0.068970 | 0.068970 | 0.083008 | 0.262939 | 0.139404 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0.083313 | 0.083313 | 0.083313 | 0.125000 | 0.125000 | 0.125000 | 3 | 10 | 0 | 0.036896 | 0.037506 | 0.037689 | 0 | 0 | 0.020203 | 0.020493 | 0.022003 | 0.018997 | 0.019302 | 0.019806 | 0 | 4 | 3 | 1 | 7 | 6 | 0.000000 | 0.000000 | 0.0 | 0.000000 | 0.000000 | 0.0 | 2.0 | 2.0 | 8 | 5 | NaN | 0.018799 | 2 | 2 | 0 | 0 | 0 | 0 | 100002 | 1.0 | 0.014900 | 5 | 6 | 0.972168 | 0.972168 | 0.972168 | 0.619141 | 0.624512 | 0.634277 | False | 9251.775391 | 9251.775391 | 179055.00 | 179055.0 | 179055.00 | 179055.0 | 0.000000 | 0.0 | 179055.000 | 179055.0 | 9.000000 | 9.0 | 1.0 | 1.0 | 0.000000 | 0.000000 | NaN | NaN | NaN | NaN | -606.000000 | -606.0 | 500.000000 | 500.0 | 24.000000 | 24.0 | 365243.0 | 365243.0 | -565.000000 | -565.0 | 125.000000 | 125.0 | -25.000000 | -25.0 | -17.000000 | -17.0 | 0.000000 | 0.0 | 1.000000 | 1.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 1.000000 | 1.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.000000 | 1.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.000000 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.000000 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 1.000000 | 1.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 1.000000 | 1.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 1.000000 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 1.000000 | 1.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -996.781818 | -103.0 | 0.0 | 0.0 | -452.75 | 780.0 | -808.5 | -36.0 | 1312.010376 | 5043.64502 | 0.0 | 0.0 | 111388.835938 | 450000.000000 | 70223.140625 | 245781.0 | 3198.856445 | 31988.564453 | 0.0 | 0.0 | -631.963636 | -7.0 | -24.554545 | 0.0 | 0.0 | 0.0 | 0.818182 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.472727 | 1.0 | 0.527273 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.245455 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.209091 | 1.0 | 0.136364 | 1.0 | 0.0 | 0.0 | 24.000000 | 24.0 | 15.000000 | 24.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 1.052734 | 2.0 | 10.000000 | 19.0 | -295.00 | -25.0 | -315.5 | -49.0 | 11559.247070 | 53093.746094 | 11559.247070 | 53093.746094 | 0.101419 | 0.069649 | 0.085002 | 0.079616 | 0.069782 | 0.069434 | 0.083459 | 0.089399 | 0.098077 | 0.077957 | 0.095885 | 0.081830 | 0.105788 | 0.092996 | 0.074057 | 0.081604 |
1 | 35698.5 | 1293502.5 | 1129500.0 | 270000.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.095886 | 0.096802 | 0.092407 | 0.052887 | 0.052887 | 0.053802 | 0 | 2.0 | 0 | 0.060486 | 0.060791 | 0.049713 | -16765 | -1188 | -291 | -828.0 | -1186.0 | 0.0 | 0.0 | 0.080017 | 0.080017 | 0.080627 | 0 | 0.034485 | 0.034485 | 0.034485 | 0.311279 | 0.622070 | NaN | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0.291748 | 0.291748 | 0.291748 | 0.333252 | 0.333252 | 0.333252 | 3 | 11 | 0 | 0.013000 | 0.013199 | 0.012802 | 0 | 0 | 0.077271 | 0.078674 | 0.078979 | 0.054901 | 0.055786 | 0.055389 | 0 | 1 | 1 | 1 | 4 | 1 | 0.003901 | 0.003901 | 0.0 | 0.009804 | 0.010002 | 0.0 | 1.0 | 1.0 | 3 | 39 | NaN | 0.003542 | 1 | 1 | 0 | 0 | 0 | 0 | 100003 | 0.0 | 0.071411 | 0 | 1 | 0.984863 | 0.984863 | 0.984863 | 0.795898 | 0.798828 | 0.804199 | False | 56553.988281 | 98356.992188 | 435436.50 | 900000.0 | 484191.00 | 1035882.0 | 3442.500000 | 6885.0 | 435436.500 | 900000.0 | 14.666667 | 17.0 | 1.0 | 1.0 | 0.050018 | 0.100037 | NaN | NaN | NaN | NaN | -1305.000000 | -746.0 | 533.000000 | 1400.0 | 10.000000 | 12.0 | 365243.0 | 365243.0 | -1274.333374 | -716.0 | -1004.333313 | -386.0 | -1054.333374 | -536.0 | -1047.333374 | -527.0 | 0.666504 | 1.0 | 0.666667 | 1.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.333333 | 1.0 | 0.333333 | 1.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.666667 | 1.0 | 0.333333 | 1.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.333333 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.000000 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.666667 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.333333 | 1.0 | 0.000000 | 0.0 | 0.666667 | 1.0 | 0.333333 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.333333 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.333333 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.333333 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.333333 | 1.0 | 0.666667 | 1.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.333333 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.333333 | 1.0 | 0.333333 | 1.0 | 0.000000 | 0.0 | 0.333333 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.333333 | 1.0 | 0.333333 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.333333 | 1.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.333333 | 1.0 | 0.666667 | 1.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.333333 | 1.0 | 0.0 | 0.0 | 0.333333 | 1.0 | 0.0 | 0.0 | 0.333333 | 1.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1400.750000 | -606.0 | 0.0 | 0.0 | -544.50 | 1216.0 | -1098.0 | -540.0 | 0.000000 | 0.00000 | 0.0 | 0.0 | 254350.125000 | 810000.000000 | 0.000000 | 0.0 | 202500.000000 | 810000.000000 | 0.0 | 0.0 | -816.000000 | -43.0 | NaN | NaN | 0.0 | 0.0 | 0.750000 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.500000 | 1.0 | 0.500000 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 1.0 | 1.0 | 10.109375 | 12.0 | 5.785156 | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.071429 | 1.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 1.040039 | 2.0 | 5.080000 | 12.0 | -1378.00 | -536.0 | -1385.0 | -544.0 | 64754.585938 | 560835.375000 | 64754.585938 | 560835.375000 | 0.069993 | 0.069649 | 0.085002 | 0.083249 | 0.069782 | 0.069434 | 0.083459 | 0.053551 | 0.075599 | 0.077957 | 0.057550 | 0.074946 | 0.063040 | 0.059148 | 0.070247 | 0.077572 |
2 | 6750.0 | 135000.0 | 135000.0 | 67500.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NaN | NaN | NaN | NaN | NaN | NaN | 0 | 1.0 | 1 | NaN | NaN | NaN | -19046 | -225 | -2531 | -815.0 | -4260.0 | 0.0 | 0.0 | NaN | NaN | NaN | 2 | NaN | NaN | NaN | NaN | 0.556152 | 0.729492 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | NaN | NaN | NaN | NaN | NaN | NaN | 0 | 9 | 1 | NaN | NaN | NaN | 0 | 0 | NaN | NaN | NaN | NaN | NaN | NaN | 1 | 4 | 3 | 1 | 7 | 6 | NaN | NaN | NaN | NaN | NaN | NaN | 0.0 | 0.0 | 8 | 11 | 26.0 | 0.010033 | 2 | 2 | 0 | 0 | 0 | 0 | 100004 | 0.0 | NaN | 7 | 1 | NaN | NaN | NaN | NaN | NaN | NaN | False | 5357.250000 | 5357.250000 | 24282.00 | 24282.0 | 20106.00 | 20106.0 | 4860.000000 | 4860.0 | 24282.000 | 24282.0 | 5.000000 | 5.0 | 1.0 | 1.0 | 0.212036 | 0.212036 | NaN | NaN | NaN | NaN | -815.000000 | -815.0 | 30.000000 | 30.0 | 4.000000 | 4.0 | 365243.0 | 365243.0 | -784.000000 | -784.0 | -694.000000 | -694.0 | -724.000000 | -724.0 | -714.000000 | -714.0 | 0.000000 | 0.0 | 1.000000 | 1.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.000000 | 1.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.000000 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.000000 | 1.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 1.000000 | 1.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 1.000000 | 1.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.000000 | 1.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 1.000000 | 1.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -867.000000 | -408.0 | 0.0 | 0.0 | -488.50 | -382.0 | -532.5 | -382.0 | 0.000000 | 0.00000 | 0.0 | 0.0 | 94518.898438 | 94537.796875 | 0.000000 | 0.0 | 0.000000 | 0.000000 | 0.0 | 0.0 | -532.000000 | -382.0 | NaN | NaN | 0.0 | 0.0 | 1.000000 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.000000 | 1.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 1.0 | 1.0 | 3.750000 | 4.0 | 2.250000 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.250000 | 1.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 1.333008 | 2.0 | 2.000000 | 3.0 | -754.00 | -724.0 | -761.5 | -727.0 | 7096.154785 | 10573.964844 | 7096.154785 | 10573.964844 | 0.101419 | 0.082720 | 0.072437 | 0.079616 | 0.067244 | 0.085273 | 0.054783 | 0.089399 | 0.098077 | 0.077957 | 0.095885 | 0.081830 | 0.105788 | 0.069781 | 0.072915 | 0.077572 |
3 | 29686.5 | 312682.5 | 297000.0 | 135000.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0 | 2.0 | 0 | NaN | NaN | NaN | -19005 | -3039 | -2437 | -617.0 | -9832.0 | 0.0 | 0.0 | NaN | NaN | NaN | 2 | NaN | NaN | NaN | NaN | 0.650391 | NaN | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | NaN | NaN | NaN | NaN | NaN | NaN | 0 | 17 | 1 | NaN | NaN | NaN | 0 | 0 | NaN | NaN | NaN | NaN | NaN | NaN | 0 | 4 | 0 | 1 | 7 | 6 | NaN | NaN | NaN | NaN | NaN | NaN | 2.0 | 2.0 | 8 | 5 | NaN | 0.008018 | 2 | 2 | 0 | 0 | 0 | 0 | 100006 | 0.0 | NaN | 7 | 6 | NaN | NaN | NaN | NaN | NaN | NaN | False | 23651.175781 | 39954.511719 | 272203.25 | 688500.0 | 291695.50 | 906615.0 | 34840.171875 | 66987.0 | 408304.875 | 688500.0 | 14.666667 | 15.0 | 1.0 | 1.0 | 0.163330 | 0.217773 | NaN | NaN | NaN | NaN | -272.444444 | -181.0 | 894.222222 | 8025.0 | 23.000000 | 48.0 | 365243.0 | 365243.0 | 91066.500000 | 365243.0 | 91584.000000 | 365243.0 | 182477.500000 | 365243.0 | 182481.750000 | 365243.0 | 0.000000 | 0.0 | 0.222222 | 1.0 | 0.222222 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.111111 | 1.0 | 0.111111 | 1.0 | 0.666667 | 1.0 | 0.111111 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.444444 | 1.0 | 0.555556 | 1.0 | 0.0 | 0.0 | 0.333333 | 1.0 | 0.111111 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.555556 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.111111 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.888889 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.111111 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.333333 | 1.0 | 0.555556 | 1.0 | 0.000000 | 0.0 | 0.888889 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.111111 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.111111 | 1.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.777778 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.333333 | 1.0 | 0.222222 | 1.0 | 0.333333 | 1.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.444444 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.111111 | 1.0 | 0.777778 | 1.0 | 0.000000 | 0.0 | 0.111111 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.111111 | 1.0 | 0.111111 | 1.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.777778 | 1.0 | 0.0 | 0.0 | 0.222222 | 1.0 | 0.0 | 0.0 | 0.222222 | 1.0 | 0.111111 | 1.0 | 0.0 | 0.0 | 0.111111 | 1.0 | 0.222222 | 1.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.111111 | 1.0 | 0.222222 | 1.0 | 0.0 | 0.0 | 0.111111 | 1.0 | 0.0 | 0.0 | 0.111111 | 1.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 12.000000 | 48.0 | 8.648438 | 48.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.095238 | 1.0 | 0.0 | 0.0 | 0.047619 | 1.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 270000.0 | 270000.0 | NaN | NaN | 0.0 | 0.0 | NaN | NaN | NaN | NaN | 0.0 | 0.0 | NaN | NaN | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NaN | NaN | 0.0 | 0.0 | NaN | NaN | NaN | NaN | 0.0 | 0.0 | 0.0 | 0.0 | 1.125000 | 2.0 | 4.437500 | 10.0 | -252.25 | -11.0 | -271.5 | -12.0 | 62947.085938 | 691786.875000 | 62947.085938 | 691786.875000 | 0.069993 | 0.082720 | 0.085002 | 0.079616 | 0.067244 | 0.085273 | 0.083459 | 0.089399 | 0.099446 | 0.077957 | 0.095885 | 0.081830 | 0.105788 | 0.092996 | 0.072915 | 0.081604 |
4 | 21865.5 | 513000.0 | 513000.0 | 121500.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NaN | NaN | NaN | NaN | NaN | NaN | 0 | 1.0 | 1 | NaN | NaN | NaN | -19932 | -3038 | -3458 | -1106.0 | -4312.0 | 0.0 | 0.0 | NaN | NaN | NaN | 2 | NaN | NaN | NaN | NaN | 0.322754 | NaN | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | NaN | NaN | NaN | NaN | NaN | NaN | 0 | 11 | 1 | NaN | NaN | NaN | 1 | 0 | NaN | NaN | NaN | NaN | NaN | NaN | 0 | 4 | 3 | 1 | 7 | 6 | NaN | NaN | NaN | NaN | NaN | NaN | 0.0 | 0.0 | 3 | 37 | NaN | 0.028656 | 2 | 2 | 0 | 1 | 0 | 0 | 100007 | 0.0 | NaN | 7 | 4 | NaN | NaN | NaN | NaN | NaN | NaN | False | 12278.804688 | 22678.785156 | 150530.25 | 247500.0 | 166638.75 | 284400.0 | 3390.750000 | 3676.5 | 150530.250 | 247500.0 | 12.333333 | 15.0 | 1.0 | 1.0 | 0.159546 | 0.218872 | NaN | NaN | NaN | NaN | -1222.833333 | -374.0 | 409.166667 | 1200.0 | 20.671875 | 48.0 | 365243.0 | 365243.0 | -1263.199951 | -344.0 | -837.200012 | 346.0 | 72136.203125 | 365243.0 | 72143.796875 | 365243.0 | 0.600098 | 1.0 | 0.333333 | 1.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.166667 | 1.0 | 0.166667 | 1.0 | 0.333333 | 1.0 | 0.166667 | 1.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.333333 | 1.0 | 0.666667 | 1.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.166667 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.000000 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.333333 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.333333 | 1.0 | 0.333333 | 1.0 | 0.000000 | 0.0 | 0.833333 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.333333 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.666667 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.666667 | 1.0 | 0.333333 | 1.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.166667 | 1.0 | 0.500000 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.500000 | 1.0 | 0.166667 | 1.0 | 0.166667 | 1.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.166667 | 1.0 | 0.000000 | 0.0 | 0.500000 | 1.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.333333 | 1.0 | 0.0 | 0.0 | 0.500000 | 1.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.500000 | 1.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.166667 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.5 | 1.0 | 0.166667 | 1.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.166667 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1149.000000 | -1149.0 | 0.0 | 0.0 | -783.00 | -783.0 | -783.0 | -783.0 | 0.000000 | 0.00000 | 0.0 | 0.0 | 146250.000000 | 146250.000000 | 0.000000 | 0.0 | 0.000000 | 0.000000 | 0.0 | 0.0 | -783.000000 | -783.0 | NaN | NaN | 0.0 | 0.0 | 1.000000 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.000000 | 1.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 1.0 | 1.0 | 15.335938 | 24.0 | 8.968750 | 24.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.045455 | 1.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.015152 | 1.0 | 0.0 | 0.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 1.166992 | 2.0 | 7.045455 | 17.0 | -1029.00 | -14.0 | -1032.0 | -14.0 | 12666.444336 | 22678.785156 | 12214.060547 | 22678.785156 | 0.101419 | 0.082720 | 0.085002 | 0.079616 | 0.067244 | 0.085273 | 0.083459 | 0.089399 | 0.098077 | 0.077957 | 0.095885 | 0.081830 | 0.063040 | 0.058824 | 0.072915 | 0.081003 |
import pandas as pd
import numpy as np
import _pickle as pickle
app_train = pickle.load(open("/data-ml/full_frame_train.p", "rb"))
extra_cols = ['func_cc_CNT_DRAWINGS_ATM_CURRENT',
'func_pos_12_SK_DPD_DEF',
'func_pos_1_AMT_INSTALMENT',
"SK_ID_CURR"
]
app_train = app_train[extra_cols]
### Start Here
#pickle.dump(alldata, open("/data-ml/alldata.p", "wb")) # save it into a file
alldata = pickle.load(open("/data-ml/alldata.p", "rb"))
playdata = alldata.copy()
B_days_columns = ['DAYS_BIRTH', 'DAYS_CREDIT_ENDDATE_mean', 'DAYS_DECISION_mean',
'DAYS_LAST_PHONE_CHANGE', 'DAYS_ENTRY_PAYMENT_mean',
'DAYS_LAST_DUE_1ST_VERSION_max', 'DAYS_ENDDATE_FACT_mean',
'DAYS_CREDIT_mean', 'DAYS_INSTALMENT_max', 'DAYS_ENTRY_PAYMENT_max']
A_days_columns = ['DAYS_ENDDATE_FACT_max', 'DAYS_TERMINATION_mean', 'DAYS_LAST_DUE_max',
'DAYS_DECISION_max', 'DAYS_EMPLOYED', 'DAYS_CREDIT_ENDDATE_max']
A_mean_columns = ['AMT_ANNUITY_mean', 'RATE_DOWN_PAYMENT_mean', 'DAYS_TERMINATION_mean',
'NUM_INSTALMENT_VERSION_mean', 'MONTHS_BALANCE_mean',
'AMT_CREDIT_SUM_LIMIT_mean', 'NAME_YIELD_GROUP_low_action_mean',
'AMT_CREDIT_SUM_mean', 'PRODUCT_COMBINATION_Cash_mean',
'CODE_REJECT_REASON_HC_mean', 'CNT_INSTALMENT_FUTURE_mean',
'STATUS_1_mean', 'CREDIT_ACTIVE_Closed_mean']
B_mean_columns = ['NAME_CONTRACT_STATUS_Refused_mean', 'DAYS_CREDIT_ENDDATE_mean',
'DAYS_DECISION_mean', 'AMT_CREDIT_mean',
'CNT_DRAWINGS_CURRENT_mean', 'NAME_CASH_LOAN_PURPOSE_XAP_mean',
'AMT_PAYMENT_mean', 'WEEKDAY_APPR_PROCESS_START_WEDNESDAY_mean',
'NAME_PAYMENT_TYPE_XNA_mean',
'PRODUCT_COMBINATION_Cash X-Sell: low_mean',
'DAYS_ENTRY_PAYMENT_mean', 'DAYS_ENDDATE_FACT_mean',
'NAME_YIELD_GROUP_middle_mean', 'DAYS_CREDIT_mean',
'AMT_INST_MIN_REGULARITY_mean', 'AMT_GOODS_PRICE_mean',
'NAME_GOODS_CATEGORY_Mobile_mean']
B_max_columns = ['AMT_INSTALMENT_max', 'AMT_DOWN_PAYMENT_max',
'AMT_CREDIT_MAX_OVERDUE_max', 'RATE_DOWN_PAYMENT_max',
'AMT_ANNUITY_max', 'DAYS_LAST_DUE_1ST_VERSION_max',
'DAYS_INSTALMENT_max', 'DAYS_ENTRY_PAYMENT_max']
B_flag_columns = ['FLAG_PHONE', 'FLAG_OWN_CAR', 'FLAG_DOCUMENT_8']
A_flag_columns = ['FLAG_WORK_PHONE', 'NFLAG_INSURED_ON_APPROVAL_mean', 'FLAG_DOCUMENT_3']
playdata["B_DAYS_ALL_Z"] = playdata[B_days_columns].std(axis=1)
playdata["B_Mean_A"] = playdata[B_mean_columns].mean(axis=1)
playdata["B_Mean_Z"] = playdata[B_mean_columns].std(axis=1)
playdata["B_Max_A"] = playdata[B_mean_columns].mean(axis=1)
playdata["B_Max_Z"] = playdata[B_mean_columns].std(axis=1)
#playdata["EXT_SOURCE_All_sum"] = playdata["EXT_SOURCE_1"] + playdata["EXT_SOURCE_2"] + playdata["EXT_SOURCE_3"]
#playdata["EXT_SOURCE_All_mult"] = (playdata["EXT_SOURCE_1"] * playdata["EXT_SOURCE_2"]) / playdata["EXT_SOURCE_3"]
playdata["an_pay"] = playdata["AMT_ANNUITY"] - playdata["AMT_PAYMENT_mean"]
playdata["inst_pay"] = playdata["AMT_INSTALMENT_mean"] - playdata["AMT_PAYMENT_mean"]
playdata["an_m"] = playdata["AMT_ANNUITY_mean"] - playdata["AMT_PAYMENT_mean"]
playdata["dra_instal"] = playdata["CNT_DRAWINGS_CURRENT_mean"]/playdata["CNT_INSTALMENT_MATURE_CUM_mean"]
playdata["day_diff"] = playdata["DAYS_ENTRY_PAYMENT_mean"] - playdata["DAYS_DECISION_mean"]
playdata["amt_cr"] = playdata["AMT_APPLICATION_mean"] - playdata["AMT_CREDIT_mean"]
playdata["days_w"] = playdata["DAYS_FIRST_DUE_mean"] - playdata["DAYS_LAST_DUE_mean"]
playdata["due_dil"] = playdata["DAYS_LAST_DUE_1ST_VERSION_mean"] - playdata["DAYS_FIRST_DUE_mean"]
playdata["avg_amt"] = playdata["AMT_BALANCE_mean"]/playdata["MONTHS_BALANCE_mean"]
playdata["Mean_Max_ANN"] = playdata['AMT_ANNUITY_max']/playdata['AMT_ANNUITY_mean']
playdata["Mean_Max_AMT"] = playdata['AMT_PAYMENT_max']/playdata['AMT_PAYMENT_mean']
playdata["Mean_Max_CNT"] = playdata['CNT_PAYMENT_max']/playdata['CNT_PAYMENT_mean']
playdata["Mean_Max_RDP"] = playdata['RATE_DOWN_PAYMENT_max']/playdata['RATE_DOWN_PAYMENT_mean']
playdata["Mean_Max_APT"] = playdata['AMT_PAYMENT_TOTAL_CURRENT_max']/playdata['AMT_PAYMENT_TOTAL_CURRENT_mean']
#playdata["EXT_SOURCE_All_sum"] = playdata["EXT_SOURCE_1"] * playdata["EXT_SOURCE_2"] + playdata["EXT_SOURCE_3"]
#playdata["EXT_SOURCE_All_mult"] = (playdata["EXT_SOURCE_1"] * playdata["EXT_SOURCE_2"]) / playdata["EXT_SOURCE_3"]
playdata.head()
AMT_ANNUITY | AMT_CREDIT | AMT_GOODS_PRICE | AMT_INCOME_TOTAL | AMT_REQ_CREDIT_BUREAU_DAY | AMT_REQ_CREDIT_BUREAU_HOUR | AMT_REQ_CREDIT_BUREAU_MON | AMT_REQ_CREDIT_BUREAU_QRT | AMT_REQ_CREDIT_BUREAU_WEEK | AMT_REQ_CREDIT_BUREAU_YEAR | ... | day_diff | amt_cr | days_w | due_dil | avg_amt | Mean_Max_ANN | Mean_Max_AMT | Mean_Max_CNT | Mean_Max_RDP | Mean_Max_APT | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 24700.5 | 406597.5 | 351000.0 | 202500.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | ... | 290.500000 | 0.00 | -540.00000 | 690.000000 | NaN | 1.000000 | 4.593184 | 1.000000 | NaN | NaN |
1 | 35698.5 | 1293502.5 | 1129500.0 | 270000.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | -80.000000 | -48754.50 | -220.00000 | 270.000061 | NaN | 1.739170 | 8.660936 | 1.200195 | 2.000000 | NaN |
2 | 6750.0 | 135000.0 | 135000.0 | 67500.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 53.500000 | 4176.00 | -60.00000 | 90.000000 | NaN | 1.000000 | 1.490098 | 1.000000 | 1.000000 | NaN |
3 | 29686.5 | 312682.5 | 297000.0 | 135000.0 | NaN | NaN | NaN | NaN | NaN | NaN | ... | 0.944444 | -19492.25 | -91411.00000 | 517.500000 | NaN | 1.689324 | 10.989975 | 2.087891 | 1.333008 | NaN |
4 | 21865.5 | 513000.0 | 513000.0 | 121500.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 190.833333 | -16108.50 | -73399.40625 | 425.999939 | NaN | 1.846986 | 1.856777 | 2.322266 | 1.372070 | NaN |
5 rows × 638 columns
##playdata= pd.merge(playdata, principalDf, on="SK_ID_CURR", how="left")
playdata= pd.merge(playdata, app_train, on="SK_ID_CURR", how="left")
playdata = playdata.replace([np.inf, -np.inf], np.nan)
playdata = playdata.fillna(value=0)
print(playdata.shape)
playdata = playdata.dropna(axis=1)
print(playdata.shape)
(356255, 641)
(356255, 641)
genetic_columns = ['i136', 'i12', 'i10', 'i17', 'i8', 'i13', 'i35', 'i24', 'i14', 'i9',
'i2', 'i119', 'i15', 'i4', 'i11', 'i21', 'i127', 'i20', 'i19',
'i32', 'i22', 'i28', 'i26', 'i317', 'i37', 'i3', 'i1', 'i51', 'i43',
'i23', 'i18', 'i126', 'i105', 'i27', 'i494', 'i16', 'i34', 'i404',
'i36', 'i454', 'i62', 'i55', 'i340', 'i25', 'i413', 'i7', 'i39',
'i304', 'i111', 'i74', 'i382', 'i67', 'i57', 'i68', 'i6', 'i348',
'i175', 'i493', 'i289', 'i171', 'i30', 'i64', 'i255', 'i94', 'i290',
'i50', 'i140', 'i176', 'i33', 'i491', 'i5', 'i70', 'i489', 'i38',
'i29', 'i45', 'i152', 'i63', 'i205', 'i69', 'i325', 'i374', 'i326',
'i101', 'i77', 'i227', 'i390', 'i251', 'i183', 'i244', 'i149',
'i445', 'i490', 'i0', 'i381', 'i300', 'i228', 'i403', 'i224',
'i311', 'i359', 'i177', 'i192', 'i173', 'i298', 'i234', 'i40',
'i129', 'i419', 'i318', 'i384', 'i236', 'i378', 'i258', 'i47',
'i405', 'i502', 'i492', 'i411', 'i53', 'i448', 'i343', 'i389',
'i211', 'i60', 'i420', 'i31', 'i391', 'i66', 'i363', 'i108', 'i379',
'i130', 'i406', 'i280', 'i498', 'i172', 'i483', 'i85', 'i237',
'i260', 'i131', 'i431', 'i464', 'i100', 'i444', 'i257', 'i504',
'i87', 'i435', 'i294', 'i386', 'i48', 'i150', 'i242', 'i505',
'i156', 'i426', 'i256', 'i46', 'i49', 'i123', 'i501', 'i352', 'i56',
'i125', 'i249', 'i380', 'i114', 'i75', 'i440', 'i99', 'i485',
'i190', 'i477', 'i309', 'i424', 'i214', 'i407', 'i254', 'i135',
'i218', 'i368', 'i73', 'i253', 'i117', 'i98', 'i216', 'i230',
'i328', 'i361', 'i484', 'i365', 'i315', 'i96', 'i265', 'i148',
'i122', 'i181', 'i417', 'i295', 'i503', 'i385', 'i42', 'i162',
'i147', 'i185', 'i79', 'i141', 'i157', 'i213', 'i450', 'i59', 'i84',
'i118', 'i203', 'i110', 'i120', 'i495', 'i347', 'i144', 'i324',
'i128', 'i331', 'i303', 'i138', 'i235', 'i262', 'i170', 'i240',
'i232', 'i344', 'i198', 'i54', 'i137', 'i451', 'i456', 'i212',
'i233', 'i394', 'i443', 'i310', 'i442', 'i356', 'i158', 'i160',
'i102', 'i179', 'i103', 'i65', 'i246', 'i510', 'i239', 'i428',
'i460', 'i285', 'i97', 'i387', 'i480', 'i146', 'i319', 'i113',
'i291', 'i91', 'i95', 'i169', 'i82', 'i89', 'i193', 'i468', 'i409',
'i52', 'i376', 'i115', 'i116', 'i400', 'i151', 'i441', 'i266',
'i399', 'i307', 'i44', 'i112', 'i305', 'i72', 'i459', 'i342',
'i458', 'i182', 'i471', 'i372', 'i507', 'i221', 'i369', 'i167',
'i455', 'i299', 'i139', 'i377', 'i497', 'SK_ID_CURR']
genetic_test = pickle.load(open("/data-ml/genetic_test.p", "rb"))
genetic_train = pickle.load(open("/data-ml/genetic_train.p", "rb"))
genetic_train = pd.concat((genetic_train[genetic_columns],genetic_test[genetic_columns]),axis=0)
del genetic_test
playdata = pd.merge(playdata,genetic_train, on="SK_ID_CURR",how="left" )
del genetic_train
1+1
2
Each time-step takes 30 seconds.
function_set = [‘add’, ‘sub’, ‘mul’, ‘div’, ‘sqrt’, ‘log’, ‘abs’, ‘neg’, ‘inv’,’tan’]
gp = SymbolicTransformer(generations=800, population_size=200, hall_of_fame=100, n_components=10, function_set=function_set, parsimony_coefficient=0.0005, max_samples=0.9, verbose=1, random_state=0, n_jobs=6)
gp.fit(playdata.loc[~playdata.is_test, :].drop([“SK_ID_CURR”, “TARGET”, “is_test”], axis=1), playdata.loc[~playdata.is_test, :][“TARGET”]) gp_features.to_csv(“gp_features.csv”,index=False)
new = pd.read_csv("imp_feats2.csv")
fit_list = list(new.iloc[:,0].values)
playdata = playdata.drop(fit_list,axis=1)
playdata.shape
(356255, 435)
import _pickle as pickle
#pickle.dump(playdata, open("/data-ml/playdata.p", "wb")) # save it into a file
playdata = pickle.load(open("/data-ml/playdata.p", "rb"))
low = ['i7', 'i8', 'i9', 'i10', 'i11']
high = ['i3', 'i15', 'i12', 'i35', 'EXT_SOURCE_3']
low_l = ['i11', 'i10', 'i9', 'i8', 'i7']
high_l = ['i1', 'inst_pay', 'DAYS_CREDIT_UPDATE_mean', 'i25', 'i13']
for h, l in zip(high, low):
playdata[h+"_"+l] = playdata[l]/playdata[h]
playdata[h+"_"+l] = playdata[h+"_"+l].replace([np.inf, -np.inf], np.nan)
playdata[h+"_"+l] = playdata[h+"_"+l].fillna(value=0)
#playdata = playdata.reset_index()
smalldata = playdata.loc[~playdata.is_test, :].iloc[140000:200000,:]
cols_to_drop = ["SK_ID_CURR", "TARGET", "is_test"]
## Can possibly include, SK_ID_CURR
X_train = smalldata.loc[~smalldata.is_test, :].drop(cols_to_drop, axis=1)
y_train = smalldata.loc[~smalldata.is_test, "TARGET"]
LGB and XGB have a rich toolset to remove noisy features and regularize your models. Two of the most important for this competition are feature_fraction and reg_lambda.
# X_train = alldata.loc[~alldata.is_test, :].drop(cols_to_drop, axis=1)
# y_train = alldata.loc[~alldata.is_test, "TARGET"]
X_test = playdata.loc[playdata.is_test, :].drop(cols_to_drop, axis=1)
n_splits = 5
cvv = StratifiedKFold(n_splits=n_splits, random_state=42)
oof_preds = np.zeros(X_train.shape[0])
sub = pd.read_csv(path + "sample_submission.csv")
sub["TARGET"] = 0
feature_importances = pd.DataFrame()
for i, (fit_idx, val_idx) in enumerate(cvv.split(X_train, y_train)):
X_fit = X_train.iloc[fit_idx]
y_fit = y_train.iloc[fit_idx]
X_val = X_train.iloc[val_idx]
y_val = y_train.iloc[val_idx]
model = LGBMClassifier(
**params
)
model.fit(
X_fit,
y_fit,
eval_set=[(X_fit, y_fit), (X_val, y_val)],
eval_names=('fit', 'val'),
eval_metric='auc',
early_stopping_rounds=150,
verbose=False
)
oof_preds[val_idx] = model.predict_proba(X_val, num_iteration=model.best_iteration_)[:, 1]
sub['TARGET'] += model.predict_proba(X_test, num_iteration=model.best_iteration_)[:,1]
fi = pd.DataFrame()
fi["feature"] = X_train.columns
fi["importance"] = model.feature_importances_
fi["fold"] = (i+1)
feature_importances = pd.concat([feature_importances, fi], axis=0)
print("Fold {} AUC: {:.8f}".format(i+1, roc_auc_score(y_val, oof_preds[val_idx])))
print('Full AUC score %.8f' % roc_auc_score(y_train, oof_preds))
Fold 1 AUC: 0.77929129
Fold 2 AUC: 0.77723532
Fold 3 AUC: 0.77136001
Fold 4 AUC: 0.77641178
Fold 5 AUC: 0.77529514
Full AUC score 0.77585398
Fold 1 AUC: 0.77349891
Fold 2 AUC: 0.77088397
Fold 3 AUC: 0.77019909
Fold 4 AUC: 0.77242054
Fold 5 AUC: 0.77165830
Full AUC score 0.77165772
params = {
'boosting_type': 'gbdt',
'max_depth': -1,
'objective': 'binary',
'n_estimators': 3485,
'nthread': 5,
'num_leaves': 39,
'learning_rate': 0.05,
'max_bin': 512,
'subsample_for_bin': 200,
'subsample': 0.36,
'subsample_freq': 1,
'colsample_bytree': 0.98,
'reg_alpha': 8,
'reg_lambda': 2,
'min_split_gain': 0.5,
'min_child_weight': 1,
'min_child_samples': 5,
'scale_pos_weight': 1,
'num_class': 1,
'metric': 'auc'}
## Someones
params["max_depth"]=5
params["num_leaves"]=5 ** 2 - 1
params["learning_rate"]=0.007
params["n_estimators"]=30000
params["min_child_samples"]=80
params["subsample"]=0.8
params["colsample_bytree"]=1
# params["reg_lambda"] = 2
# params["feature_fraction and"] = 2
# params["seed"] = 5
#### Scripus/First Olivier
params['n_estimators']=4000
params['learning_rate']=0.03
params['num_leaves']=30
params['colsample_bytree']=.8
params['subsample']=.9
params['max_depth']=7
params['reg_alpha']=.1
params['reg_lambda']=.1
params['min_split_gain']=.01
params['min_child_weight']=100
params['silent']=-1
params['verbose']=-1
params['nthread']=4
## More Overfitting.
## Better First Outcome - Worth Trying
params['max_depth']=5
params['reg_alpha']=.32
params['colsample_bytree']=.70
params['learning_rate']=0.025
#### Aguiar/Bayes Opt
#### Whatever benefit you got out of first olivier - this would give you 0.001 more.
params['n_estimators']=10000
params['learning_rate']=0.02
params['num_leaves']=34
params['colsample_bytree']=0.9497036
params['subsample']=0.8715623
params['max_depth']=8
params['reg_alpha']=0.041545473
params['reg_lambda']=0.0735294
params['min_split_gain']=0.0222415
params['min_child_weight']=39.3259775
params['silent']=-1
params['verbose']=-1
from lightgbm import cv
from lightgbm import Dataset
def get_score(X, y, usecols, params, dropcols=[]):
dtrain = Dataset(X[usecols].drop(dropcols, axis=1), y)
eval = cv(params,
dtrain,
nfold=5,
stratified=True,
num_boost_round=20000,
early_stopping_rounds=320, ## After it stopped how long should go on.
verbose_eval=20,
seed = 5,
show_stdv=True)
return max(eval['auc-mean'])
## 1940
get_score(X_train,y_train , list(X_train.columns), params )
/home/ubuntu/anaconda3/lib/python3.6/site-packages/lightgbm/engine.py:390: UserWarning: Found `n_estimators` in params. Will use it instead of argument
warnings.warn("Found `{}` in params. Will use it instead of argument".format(alias))
/home/ubuntu/anaconda3/lib/python3.6/site-packages/lightgbm/basic.py:657: UserWarning: silent keyword has been found in `params` and will be ignored. Please use silent argument of the Dataset constructor to pass this parameter.
'Please use {0} argument of the Dataset constructor to pass this parameter.'.format(key))
[20] cv_agg's auc: 0.750899 + 0.00239836
[40] cv_agg's auc: 0.753287 + 0.00246512
[60] cv_agg's auc: 0.755524 + 0.00245156
[80] cv_agg's auc: 0.758147 + 0.00248164
[100] cv_agg's auc: 0.760763 + 0.00240347
[120] cv_agg's auc: 0.763728 + 0.00230278
[140] cv_agg's auc: 0.766515 + 0.00218787
[160] cv_agg's auc: 0.769025 + 0.00202398
[180] cv_agg's auc: 0.77138 + 0.00187914
[200] cv_agg's auc: 0.773459 + 0.00173328
[220] cv_agg's auc: 0.775105 + 0.00167595
[240] cv_agg's auc: 0.776582 + 0.00159076
[260] cv_agg's auc: 0.777786 + 0.0015023
[280] cv_agg's auc: 0.778834 + 0.00143714
[300] cv_agg's auc: 0.779782 + 0.00141863
[320] cv_agg's auc: 0.780557 + 0.00143464
[340] cv_agg's auc: 0.78123 + 0.00133199
[360] cv_agg's auc: 0.781897 + 0.00139311
[380] cv_agg's auc: 0.782541 + 0.00132599
[400] cv_agg's auc: 0.783049 + 0.00131854
[420] cv_agg's auc: 0.783565 + 0.00136944
[440] cv_agg's auc: 0.783998 + 0.00139678
[460] cv_agg's auc: 0.784402 + 0.00136716
[480] cv_agg's auc: 0.784776 + 0.00131997
[500] cv_agg's auc: 0.785092 + 0.00130671
[520] cv_agg's auc: 0.785412 + 0.00129445
[540] cv_agg's auc: 0.785687 + 0.001333
[560] cv_agg's auc: 0.785975 + 0.00134971
[580] cv_agg's auc: 0.786204 + 0.00129318
[600] cv_agg's auc: 0.786451 + 0.0012906
[620] cv_agg's auc: 0.786658 + 0.00131939
[640] cv_agg's auc: 0.786836 + 0.00130499
[660] cv_agg's auc: 0.787018 + 0.00130422
[680] cv_agg's auc: 0.787212 + 0.00129278
[700] cv_agg's auc: 0.787389 + 0.00130515
[720] cv_agg's auc: 0.787528 + 0.00134682
[740] cv_agg's auc: 0.78765 + 0.00134197
[760] cv_agg's auc: 0.787781 + 0.00136115
[780] cv_agg's auc: 0.787922 + 0.00134426
[800] cv_agg's auc: 0.788075 + 0.00133484
[820] cv_agg's auc: 0.788184 + 0.00133475
[840] cv_agg's auc: 0.788312 + 0.00134592
[860] cv_agg's auc: 0.788427 + 0.00133218
[880] cv_agg's auc: 0.788538 + 0.00136188
[900] cv_agg's auc: 0.788682 + 0.00133944
[920] cv_agg's auc: 0.788785 + 0.00134624
[940] cv_agg's auc: 0.788852 + 0.00132261
[960] cv_agg's auc: 0.788956 + 0.00132642
[980] cv_agg's auc: 0.789066 + 0.00134892
[1000] cv_agg's auc: 0.789159 + 0.00133023
[1020] cv_agg's auc: 0.789224 + 0.00135108
[1040] cv_agg's auc: 0.789291 + 0.00136096
[1060] cv_agg's auc: 0.789362 + 0.00138416
[1080] cv_agg's auc: 0.789473 + 0.0013763
[1100] cv_agg's auc: 0.789529 + 0.00134436
[1120] cv_agg's auc: 0.789628 + 0.00135566
[1140] cv_agg's auc: 0.78969 + 0.00135585
[1160] cv_agg's auc: 0.789747 + 0.00135354
[1180] cv_agg's auc: 0.789794 + 0.00137751
[1200] cv_agg's auc: 0.789855 + 0.00139769
[1220] cv_agg's auc: 0.789892 + 0.00141634
[1240] cv_agg's auc: 0.789939 + 0.00146886
[1260] cv_agg's auc: 0.789978 + 0.00149474
[1280] cv_agg's auc: 0.790038 + 0.00149766
[1300] cv_agg's auc: 0.790075 + 0.00147383
[1320] cv_agg's auc: 0.790096 + 0.00148093
[1340] cv_agg's auc: 0.79014 + 0.00149847
[1360] cv_agg's auc: 0.790174 + 0.00152227
[1380] cv_agg's auc: 0.790238 + 0.00152361
[1400] cv_agg's auc: 0.790278 + 0.00155701
[1420] cv_agg's auc: 0.790303 + 0.00155319
[1440] cv_agg's auc: 0.790331 + 0.00152657
[1460] cv_agg's auc: 0.79037 + 0.0015125
[1480] cv_agg's auc: 0.790392 + 0.00151134
[1500] cv_agg's auc: 0.790396 + 0.00150945
[1520] cv_agg's auc: 0.790422 + 0.00151041
[1540] cv_agg's auc: 0.790465 + 0.00150177
[1560] cv_agg's auc: 0.790507 + 0.00153057
[1580] cv_agg's auc: 0.790542 + 0.00150971
[1600] cv_agg's auc: 0.790565 + 0.00151222
[1620] cv_agg's auc: 0.790608 + 0.00151308
[1640] cv_agg's auc: 0.790608 + 0.00150761
[1660] cv_agg's auc: 0.790647 + 0.00149686
[1680] cv_agg's auc: 0.790658 + 0.00148574
[1700] cv_agg's auc: 0.790661 + 0.00148581
[1720] cv_agg's auc: 0.790682 + 0.0014751
[1740] cv_agg's auc: 0.790665 + 0.00147565
[1760] cv_agg's auc: 0.790666 + 0.00148164
[1780] cv_agg's auc: 0.790657 + 0.00148223
[1800] cv_agg's auc: 0.790643 + 0.00148393
[1820] cv_agg's auc: 0.790659 + 0.00145436
[1840] cv_agg's auc: 0.790631 + 0.00143657
[1860] cv_agg's auc: 0.790619 + 0.001454
[1880] cv_agg's auc: 0.790609 + 0.00143859
[1900] cv_agg's auc: 0.790643 + 0.00146536
[1920] cv_agg's auc: 0.790673 + 0.00146466
[1940] cv_agg's auc: 0.790673 + 0.00145731
[1960] cv_agg's auc: 0.790676 + 0.00145561
[1980] cv_agg's auc: 0.790651 + 0.00142868
[2000] cv_agg's auc: 0.790638 + 0.00141753
[2020] cv_agg's auc: 0.79065 + 0.00144084
[2040] cv_agg's auc: 0.790655 + 0.00140762
0.79070065853297
[20] cv_agg's auc: 0.745845 + 0.00631848
[40] cv_agg's auc: 0.748735 + 0.00605509
[60] cv_agg's auc: 0.751374 + 0.00564571
[80] cv_agg's auc: 0.753998 + 0.00572914
[100] cv_agg's auc: 0.756195 + 0.00530572
## Don't Delete
##get_score(X_train,y_train , list(X_train.columns), params )
/home/ubuntu/anaconda3/lib/python3.6/site-packages/lightgbm/engine.py:390: UserWarning: Found `n_estimators` in params. Will use it instead of argument
warnings.warn("Found `{}` in params. Will use it instead of argument".format(alias))
/home/ubuntu/anaconda3/lib/python3.6/site-packages/lightgbm/basic.py:657: UserWarning: silent keyword has been found in `params` and will be ignored. Please use silent argument of the Dataset constructor to pass this parameter.
'Please use {0} argument of the Dataset constructor to pass this parameter.'.format(key))
[20] cv_agg's auc: 0.747892 + 0.00290124
[40] cv_agg's auc: 0.751845 + 0.00268741
[60] cv_agg's auc: 0.755811 + 0.00260676
[80] cv_agg's auc: 0.759646 + 0.00256537
[100] cv_agg's auc: 0.763551 + 0.00244864
[120] cv_agg's auc: 0.767361 + 0.00221175
[140] cv_agg's auc: 0.770545 + 0.00208467
[160] cv_agg's auc: 0.773334 + 0.00189316
[180] cv_agg's auc: 0.775621 + 0.00174513
[200] cv_agg's auc: 0.77762 + 0.00167602
[220] cv_agg's auc: 0.779307 + 0.00164218
[240] cv_agg's auc: 0.780757 + 0.00158985
[260] cv_agg's auc: 0.781872 + 0.00158269
[280] cv_agg's auc: 0.782887 + 0.00155406
[300] cv_agg's auc: 0.783723 + 0.0015111
[320] cv_agg's auc: 0.784442 + 0.00150647
[340] cv_agg's auc: 0.785076 + 0.00152412
[360] cv_agg's auc: 0.785549 + 0.00160498
[380] cv_agg's auc: 0.786153 + 0.00158198
[400] cv_agg's auc: 0.7865 + 0.0015672
[420] cv_agg's auc: 0.786869 + 0.00152609
[440] cv_agg's auc: 0.78717 + 0.00150457
[460] cv_agg's auc: 0.787452 + 0.00153412
[480] cv_agg's auc: 0.787748 + 0.00158983
[500] cv_agg's auc: 0.788004 + 0.00157703
[520] cv_agg's auc: 0.788219 + 0.00159905
[540] cv_agg's auc: 0.78852 + 0.00159311
[560] cv_agg's auc: 0.788696 + 0.00157586
[580] cv_agg's auc: 0.788886 + 0.00158338
[600] cv_agg's auc: 0.789052 + 0.00151509
[620] cv_agg's auc: 0.78921 + 0.00145105
[640] cv_agg's auc: 0.789319 + 0.00147611
[660] cv_agg's auc: 0.789408 + 0.00146584
[680] cv_agg's auc: 0.789553 + 0.00147051
[700] cv_agg's auc: 0.789634 + 0.00145347
[720] cv_agg's auc: 0.789737 + 0.00147721
[740] cv_agg's auc: 0.789837 + 0.00146458
[760] cv_agg's auc: 0.789945 + 0.00147083
[780] cv_agg's auc: 0.790051 + 0.00148616
[800] cv_agg's auc: 0.790099 + 0.00152455
[820] cv_agg's auc: 0.790166 + 0.00156027
[840] cv_agg's auc: 0.79021 + 0.00160685
[860] cv_agg's auc: 0.790269 + 0.00156309
[880] cv_agg's auc: 0.790303 + 0.00159579
[900] cv_agg's auc: 0.790334 + 0.00159927
[920] cv_agg's auc: 0.790381 + 0.00160419
[940] cv_agg's auc: 0.790369 + 0.00162052
[960] cv_agg's auc: 0.790383 + 0.00162689
[980] cv_agg's auc: 0.790423 + 0.00162551
[1000] cv_agg's auc: 0.790447 + 0.00164424
[1020] cv_agg's auc: 0.790453 + 0.00164684
[1040] cv_agg's auc: 0.790481 + 0.00165162
[1060] cv_agg's auc: 0.790516 + 0.00165075
[1080] cv_agg's auc: 0.790516 + 0.00163296
[1100] cv_agg's auc: 0.790523 + 0.00163513
[1120] cv_agg's auc: 0.790497 + 0.00161327
[1140] cv_agg's auc: 0.790528 + 0.00160904
[1160] cv_agg's auc: 0.790539 + 0.00159895
[1180] cv_agg's auc: 0.790545 + 0.00159921
[1200] cv_agg's auc: 0.790552 + 0.00160067
[1220] cv_agg's auc: 0.790563 + 0.00158254
[1240] cv_agg's auc: 0.790579 + 0.00155828
[1260] cv_agg's auc: 0.790569 + 0.0015838
[1280] cv_agg's auc: 0.790564 + 0.00159268
[1300] cv_agg's auc: 0.790589 + 0.00159251
[1320] cv_agg's auc: 0.790573 + 0.00160981
[1340] cv_agg's auc: 0.790579 + 0.00163903
[1360] cv_agg's auc: 0.790565 + 0.0016914
[1380] cv_agg's auc: 0.790511 + 0.00164031
[1400] cv_agg's auc: 0.790487 + 0.0016701
[1420] cv_agg's auc: 0.790467 + 0.00166841
[1440] cv_agg's auc: 0.79045 + 0.00165862
[1460] cv_agg's auc: 0.790436 + 0.00167787
[1480] cv_agg's auc: 0.790454 + 0.00168202
0.79058929749666795
### brand_new
1580 seed 13 -7902 - Doesn't do well.
### new
### 1180 seed 13, 1180 seed 20
### 440, seed 5 380, seed 1 . 380 seed 9 460 seed 13, 420 seed 20 -0.790589
# dip = {}
# dip[1] = [440, 5]
# dip[2] = [380, 1]
# dip[3] = [380, 9]
# dip[4] = [460, 13]
# dip[5] = [420, 20]
#model.best_iteration_
dip = {}
dip[1] = [1180, 5]
dip[2] = [1180, 1]
dip[3] = [1180, 9]
dip[4] = [1180, 13]
dip[5] = [1180, 20]
#model.best_iteration_
# X_train = alldata.loc[~alldata.is_test, :].drop(cols_to_drop, axis=1)
# y_train = alldata.loc[~alldata.is_test, "TARGET"]
X_test = playdata.loc[playdata.is_test, :].drop(cols_to_drop, axis=1)
n_splits = 5
cvv = StratifiedKFold(n_splits=n_splits, random_state=42)
oof_preds = np.zeros(X_train.shape[0])
sub = pd.read_csv(path + "sample_submission.csv")
sub["TARGET"] = 0
feature_importances = pd.DataFrame()
ba= 0
for i, (fit_idx, val_idx) in enumerate(cvv.split(X_train, y_train)):
ba = ba + 1
params["seed"] = dip[ba][1]
params["num_boost_round"] = dip[ba][0]
model = LGBMClassifier(
**params
)
model.fit(
X_train,
y_train,
eval_metric='auc',
verbose=False
)
sub['TARGET'] += model.predict_proba(X_test, num_iteration=dip[ba][0])[:,1]
fi = pd.DataFrame()
fi["feature"] = X_train.columns
fi["importance"] = model.feature_importances_
fi["fold"] = (i+1)
feature_importances = pd.concat([feature_importances, fi], axis=0)
sub["TARGET"] /= n_splits
sub.to_csv("lgbm6.csv", index=None, float_format="%.8f")
import shap
shap_values = shap.TreeExplainer(model).shap_values(X_train)
shap_fram = pd.DataFrame(shap_values[:,:-1], columns=list(X_train.columns))
shap_new = shap_fram.sum().sort_values().to_frame()
shap_new.columns = ["SHAP"]
list(shap_new.head(20).index.values)
[‘i3’, ‘i15’, ‘i12’, ‘i35’, ‘EXT_SOURCE_3’, ‘i13’, ‘i25’, ‘DAYS_CREDIT_UPDATE_mean’, ‘inst_pay’, ‘i1’, ‘DAYS_CREDIT_mean’, ‘i37’, ‘i77’, ‘AMT_ANNUITY’, ‘i6’, ‘i119’, ‘i18’, ‘i384’, ‘i183’, ‘DAYS_CREDIT_max’]
high = list(shap_new.head(5).index.values)
low = [rev for rev in reversed(list(shap_new.tail(5).index.values))]
low = ['i7', 'i8', 'i9', 'i10', 'i11']
high = ['i3', 'i15', 'i12', 'i35', 'EXT_SOURCE_3']
[‘i7’, ‘i8’, ‘i9’, ‘i10’, ‘i11’]
## The Other Five
[rev for rev in reversed(list(shap_new.head(10).index.values))][:5]
[‘i1’, ‘inst_pay’, ‘DAYS_CREDIT_UPDATE_mean’, ‘i25’, ‘i13’]
list(shap_new.tail(5).index.values)
[‘i11’, ‘i10’, ‘i9’, ‘i8’, ‘i7’]
shap_new.head()
SHAP | |
---|---|
i3 | -362.615099 |
i15 | -67.921697 |
i12 | -59.016759 |
i35 | -53.034873 |
EXT_SOURCE_3 | -26.989443 |
shap_new.tail()
SHAP | |
---|---|
i11 | 51.871609 |
i10 | 106.712072 |
i9 | 184.370958 |
i8 | 214.506221 |
i7 | 229.400134 |
.to_frame().T.head()
DAYS_BIRTH | NAME_CONTRACT_STATUS_Refused_mean | DAYS_CREDIT_ENDDATE_mean | AMT_INSTALMENT_max | DAYS_DECISION_mean | AMT_CREDIT_mean | ORGANIZATION_TYPE_MEAN | AMT_DOWN_PAYMENT_max | AMT_ANNUITY | AMT_CREDIT_MAX_OVERDUE_max | ... | CODE_REJECT_REASON_HC_mean | CNT_PAYMENT_max | CNT_INSTALMENT_FUTURE_mean | EXT_SOURCE_1 | DAYS_CREDIT_ENDDATE_max | EXT_SOURCE_3 | CNT_INSTALMENT_FUTURE_max | STATUS_1_mean | CREDIT_ACTIVE_Closed_mean | NUM_INSTALMENT_NUMBER_max | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | -94.329393 | -73.081732 | -59.153025 | -59.117657 | -57.903585 | -48.936621 | -42.214968 | -40.645964 | -39.254812 | -30.469348 | ... | 30.599336 | 31.054876 | 32.973514 | 33.522551 | 37.238967 | 40.022553 | 40.582652 | 50.796038 | 61.407426 | 76.074902 |
1 rows × 616 columns
shap.summary_plot(shap_values, X_fit)
DAYS_BIRTH , DAYS_ID_PUBLISH
feat_imp = feature_importances.groupby("feature").mean().sort_values("importance", ascending=False)
feature_importances.groupby("feature").mean().sort_values("importance", ascending=False)
importance | fold | |
---|---|---|
feature | ||
i8 | 81.6 | 3.0 |
i12 | 72.2 | 3.0 |
i11 | 71.0 | 3.0 |
i17 | 61.0 | 3.0 |
i14 | 59.6 | 3.0 |
i10 | 58.6 | 3.0 |
i24 | 58.6 | 3.0 |
i3 | 58.2 | 3.0 |
i127 | 55.2 | 3.0 |
i9 | 55.2 | 3.0 |
i51 | 54.8 | 3.0 |
i15 | 52.6 | 3.0 |
i136 | 52.0 | 3.0 |
inst_pay | 52.0 | 3.0 |
i23 | 51.2 | 3.0 |
DAYS_BIRTH | 51.0 | 3.0 |
i175 | 49.2 | 3.0 |
i18 | 48.0 | 3.0 |
i43 | 45.4 | 3.0 |
i13 | 45.0 | 3.0 |
i28 | 44.6 | 3.0 |
i35 | 41.6 | 3.0 |
i2 | 41.4 | 3.0 |
i20 | 40.4 | 3.0 |
i119 | 40.0 | 3.0 |
i37 | 39.4 | 3.0 |
i6 | 38.8 | 3.0 |
DAYS_CREDIT_max | 38.4 | 3.0 |
i1 | 37.8 | 3.0 |
i404 | 37.2 | 3.0 |
... | ... | ... |
CNT_PAYMENT_max | 1.6 | 3.0 |
CNT_CHILDREN | 1.4 | 3.0 |
NAME_HOUSING_TYPE_MEAN | 1.4 | 3.0 |
NAME_CASH_LOAN_PURPOSE_Buying a used car_mean | 1.4 | 3.0 |
AMT_DRAWINGS_ATM_CURRENT_max | 1.4 | 3.0 |
CHANNEL_TYPE_Contact center_mean | 1.4 | 3.0 |
PRODUCT_COMBINATION_Cash Street: middle_mean | 1.4 | 3.0 |
ENTRANCES_AVG | 1.2 | 3.0 |
AMT_DRAWINGS_ATM_CURRENT_mean | 1.2 | 3.0 |
AMT_INST_MIN_REGULARITY_mean | 1.0 | 3.0 |
i417 | 1.0 | 3.0 |
PRODUCT_COMBINATION_Card X-Sell_mean | 1.0 | 3.0 |
BASEMENTAREA_MODE | 1.0 | 3.0 |
FLOORSMIN_AVG | 1.0 | 3.0 |
i79 | 1.0 | 3.0 |
MONTHS_BALANCE_mean | 0.8 | 3.0 |
LIVINGAPARTMENTS_AVG | 0.8 | 3.0 |
i181 | 0.8 | 3.0 |
i116 | 0.8 | 3.0 |
DAYS_TERMINATION_max | 0.8 | 3.0 |
NFLAG_INSURED_ON_APPROVAL_mean | 0.8 | 3.0 |
i495 | 0.6 | 3.0 |
NAME_CASH_LOAN_PURPOSE_Wedding / gift / holiday_max | 0.6 | 3.0 |
i428 | 0.6 | 3.0 |
CNT_FAM_MEMBERS | 0.6 | 3.0 |
i455 | 0.4 | 3.0 |
i212 | 0.4 | 3.0 |
AMT_DRAWINGS_CURRENT_mean | 0.2 | 3.0 |
i310 | 0.0 | 3.0 |
NAME_SELLER_INDUSTRY_Jewelry_mean | 0.0 | 3.0 |
433 rows × 2 columns